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[1] Quantification of the spatial distribution of sector‐specific fossil fuel CO2 emissions
provides strategic information to public and private decision makers on climate change
mitigation options and can provide critical constraints to carbon budget studies being
performed at the national to urban scales. This study analyzes the spatial distribution and
spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels
in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2
emissions differ substantially and these differences are sector‐specific. Area‐based sources
such as those in the residential and commercial sectors are driven by a combination of
population and surface temperature with per capita emissions largest in the northern
latitudes and continental interior. Emission sources associated with large individual
manufacturing or electricity producing facilities are heterogeneously distributed in both
absolute and per capita metrics. The relationship between surface temperature and sectoral
emissions suggests that the increased electricity consumption due to space cooling
requirements under a warmer climate may outweigh the savings generated by lessened
space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that
counties with high (low) CO2 emissions tend to be clustered close to other counties with
high (low) CO2 emissions and some of the spatial clustering extends to multistate
spatial domains. This is particularly true for the residential and transportation sectors,
suggesting that emissions mitigation policy might best be approached from the regional
or multistate perspective. Our findings underscore the potential for geographically focused,
sector‐specific emissions mitigation strategies and the importance of accurate spatial
distribution of emitting sources when combined with atmospheric monitoring via aircraft,
satellite and in situ measurements.

Citation: Zhou, Y., and K. R. Gurney (2011), Spatial relationships of sector‐specific fossil fuel CO2 emissions in the United
States, Global Biogeochem. Cycles, 25, GB3002, doi:10.1029/2010GB003822.

1. Introduction

[2] CO2 emissions from fossil fuel combustion and
cement manufacture are one of the principal drivers of cli-
mate change [Denman et al., 2007]. As the number of in situ
CO2 and carbon flux measurements increases and as remote
sensing atmospheric CO2 observational platforms measure
concentrations at scales of 100 km2, bottom‐up inventories
of carbon exchange must quantify fluxes at commensurate
space/time scales [Gurney et al., 2005; Gurney, 2007]. A
key goal of the North American Carbon Program is an
improved understanding of the complete exchange of carbon
between the land, atmosphere and coastal ocean [Wofsy and
Harriss, 2002]. Hence, particular emphasis has been placed

on improving inventories and atmospheric observations over
the North American domain.
[3] Similar interest has arisen regarding greenhouse gas

mitigation efforts. Because of the dominance of fossil fuel
CO2 emissions as a driver of anthropogenic climate change,
understanding the spatial pattern of these emissions, espe-
cially by economic sector, is essential in order to better
inform greenhouse gas regulation and mitigation decisions
[Parshall et al., 2009]. As CO2 emissions are not a spatially
random process, this understanding benefits from a spatially
explicit view. Furthermore, because emissions are driven by
distinctly different processes with unique space and time
signatures when analyzed in terms of economic sector, the
ability to disaggregate total fossil fuel CO2 emissions by eco-
nomic sector and subsector offers greater potential for optimal
mitigation decisions and strategic planning than analysis
based on total CO2 emissions. Finally, detail in space and
by economic driver offers a deeper insight into the relation-
ships between emissions and the underlying socioeconomic
and sociodemographic driving processes, allowing mitiga-
tion strategies to incorporate “upstream” as opposed to “end
of pipe” approaches [Aldy, 2005; Wu et al., 2005].
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[4] Prior to the availability of results from the “Vulcan
Project,” fossil fuel CO2 emissions had been resolved
globally, at the 1° × 1° spatial scale based on spatial proxies
such as population density, and most commonly at an annual
time scale [Andres et al., 1996; Olivier et al., 1999; A. L.
Brenkert, Carbon dioxide emission estimates from fossil‐
fuel burning, hydraulic cement production, and gas flaring
for 1995 on a one degree grid cell basis, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, 1998, available at http://
cdiac.esd.ornl.gov/ndps/ndp058a.html]. Within the U.S.
domain, emissions had been quantified at the state level by
fuel category or economic sector [Blasing et al., 2005a;
Gregg et al., 2009; Energy Information Administration, State
energy data system (SEDS), 2009, available at http://www.
eia.doe.gov/emeu/states/_seds.html]. Some studies had ana-
lyzed point sources but focused on a single sector or
sector segment [Ackerman and Sundquist, 2008; Pétron
et al., 2008]. The population‐based inventories were use-
ful in global studies but there were significant limitations to
their use as research began to focus on finer scales, such as
the U.S. state or county level. For example, at fine spatial
scales, population density is a poor predictor of large point
sources such as power plants which are often not collocated
with population centers [Blasing et al., 2005b]. Furthermore,
the population‐based inventories were not disaggregated by
economic sector which is often an important source of
evaluation and an important categorization for policymaking
efforts.
[5] The Vulcan Project (http://www.purdue.edu/eas/carbon/

vulcan/) provided the first U.S., process‐driven, fuel‐specific,
fossil fuel CO2 emissions inventory, quantified at scales
finer than 10 km/hourly for the year 2002 [Gurney et al.,
2009]. This data product includes detail on combustion
technology and forty‐eight fuel types through all sectors
of the U.S. economy. The Vulcan inventory is built from
decades of local/regional air pollution monitoring and com-
plements these data with census, traffic, and digital road data
sets. These data sets are processed by the Vulcan inventory
method at both the “native” resolution (geocoded points,
county, road, etc) and on a regularized grid to facilitate atmo-
spheric modeling and climate studies.
[6] In this study, we analyze the Vulcan inventory fossil

fuel CO2 emissions from the spatial perspective emphasiz-
ing economic sector disaggregation at the U.S. state and
county spatial scales. We analyze the per capita statistical
distribution, spatial and environmental gradients, and the
spatial clustering of fossil fuel CO2 emissions using a spatial
statistical approach. Our analysis isolates key spatial attri-
butes of CO2 emissions providing a basis for interpreting
observed atmospheric CO2 and designing place‐based emis-
sions mitigation policy.

2. Methods

2.1. Sector‐Specific CO2 Emissions
[7] The total CO2 emissions (onsite) in the Vulcan inven-

tory are based on data that are reported as a combination of
point, area, and linear source classifications. These data
classes are ultimately assigned to the following economic
sectors: residential, commercial, industrial, electricity produc-
tion, onroad, nonroad (such as trains, boats, snowmobiles,

and lawnmowers), aircraft, and cement production (calci-
nation) [Gurney et al., 2009]. Each of these is a combination
of more than one data source classification, but the per-
centage varies by sector [Gurney et al., 2009]. For example,
the commercial sector is derived from both area and point
source reporting whereas the industrial sector is derived
almost entirely from point sources. This study focuses on
the total onsite fossil fuel combustion CO2 emissions with
the following sectoral breakdown: residential, commercial,
industrial, electricity production, and transportation (com-
bination of onroad, nonroad, and aircraft) sectors (note we
do not include cement production in the current analysis).
The total 2002 CO2 emissions from these sectors in the U.S.
are 1583 Mt C [Gurney et al., 2009].
[8] The residential and commercial CO2 emissions are pre-

dominantly derived from area sources which represent diffuse
emissions within an individual U.S. county. The industrial
CO2 emissions are dominated by point stationary emitting
sources identified to a geocoded location and comprise enti-
ties in which emissions exit through a stack or identifiable
exhaust feature [U.S. Environmental Protection Agency,
2006]. The airport source includes emissions associated with
geocoded airport locations and represents the takeoff/landing
cycle (emissions below 3000 feet), taxiing, idling and related
aircraft activities on an annual basis [U.S. Environmental
Protection Agency, 2005a]. The point, nonpoint, and airport
data files come from the Environmental Protection Agency’s
(EPA) National Emissions Inventory (NEI) for the year 2002
[U.S. Environmental Protection Agency, 2005b].
[9] In all three of these data files (point, nonpoint, and

airport sources) we utilize the reported CO emissions and
CO and CO2 emission factors. These factors are specific to
the combustion process and the fuels tracked in the Vulcan
system. CO emission factors are often supplied in the incom-
ing data sets. Emission factors for CO2 are based on the fuel
carbon content and assume a gross calorific value or high
heating value. Only emissions associated with fuel com-
bustion are included in the Vulcan estimates. The basic
process by which CO2 emissions are created is as follows:

ECO2
n; f ¼

Eg
n; f

EFg
n; f

EFCO2
n; f " Ox% ð1Þ

where En, f
CO2 are the CO2 emissions for process n (e.g.,

industrial 10 MMBTU boiler, industrial gasoline recipro-
cating turbine) and fuel type f (e.g., natural gas or bitumi-
nous coal); En,f

g are the equivalent amount of uncontrolled
criteria pollutant emissions g (CO) for process n and fuel
type f ; EFn, f

g is the emission factor associated with the cri-
teria pollutant g for process n and fuel type f ; EFn, f

CO2 is the
CO2 emission factor for process n and fuel type f and Ox%
is the oxidation factor (100% for natural gas and 99% for
coal and oil).
[10] Because of the reliability of direct CO2 monitoring

and the need for fine time resolution data, we utilize observed
CO2 emissions available at electrical generating units (EGUs)
(U.S. Environmental Protection Agency, Clean air markets:
Data and maps, Clean Air Markets Division, EPA, Washing-
ton, D. C., 2008, http://camddataandmaps.epa.gov/gdm/).
These data contain a large number of facilities that utilize
Emission Tracking System/Continuous Emissions Monitoring
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systems (ETS/CEMs), widely considered the most accurate
for CO2 emissions estimation at these facilities [Pétron et
al., 2008].
[11] The onroad transportation emissions are based on a

combination of county‐level data and standard internal com-
bustion engine stochiometry. The county‐level data come
from the National Mobile Inventory Model (NMIM) County
Database (NCD) for 2002 which quantifies the vehicle
miles traveled in a county by month, specific to vehicle class
and road type [U.S. Environmental Protection Agency,
2005c]. The Mobile6.2 combustion emissions model is used
to generate CO2 emission factors on a per mile basis given
inputs such as fleet information, temperature, fuel type, and
vehicle speed [U.S. Environmental Protection Agency,
2001]. Nonroad emissions are structured similarly to the
onroad mobile emissions data and consist of mobile sources
that do not travel on designated roadways [U.S. Environmental
Protection Agency, 2005a]. The Aero2K aircraft CO2 emis-
sions inventory is directly used to estimate aircraft emis-
sions beyond the takeoff/landing cycle emissions captured
in the NEI airport database [Eyers et al., 2004].
[12] Further details regarding the Vulcan methodology

can be found in the work of Gurney et al. [2009] and in the
detailed Vulcan online methodology documentation (http://
www.purdue.edu/eas/carbon/vulcan/Vulcan.documentation.
v1.1.pdf).
[13] We use two different spatially resolved outputs from

the Vulcan results: county‐level emissions (which are aggre-
gated to state level where needed) and emissions transferred
to a 10 km × 10 km regular spatial grid. All analysis utilizes
the county results except for the exploration of geographic
and environmental impact (section 3.4).
[14] Population statistics similarly utilize two different

population data sets. For use with county‐level emissions,
we use the 2002 U.S. Census county‐level population esti-
mates (http://www.census.gov/popest/counties/counties.html).
For use with the 10 km × 10 km gridded emissions, we use
gridded population for the year 2000 available at 30 arc‐
second resolution (∼1 km) from the Socioeconomic Data and
Applications Center (SEDAC) Project (http://sedac.ciesin.
columbia.edu/usgrid).

2.2. Probability Distribution
[15] A succinct method by which to gain an understand-

ing of the overall characteristics of the spatially resolved
per capita fossil fuel CO2 emissions is through the use of
probability distributions. Here, we analyze a related quan-
tity, the cumulative probability distribution (CPD), which is
the probability that X is less than or equal to a given value x:

CPD xð Þ ¼ Prob X % xð Þ ð2Þ

With the increase of x, CPD increases from 0 to 1. For a
data set with n values xi, the CPD can be calculated as
CPD(xi) = i/n by sorting xi into increasing order, where i is
the sorted index [Raupach et al., 2010].

2.3. Geographic Patterns
[16] In order to study the impact of sector‐specific, envi-

ronmental gradients on the national CO2 emissions, we
separated the U.S. into different geographic zones along

longitude, latitude, elevation, heating degree day (HDD), and
cooling degree day (CDD). We classified six zones based on
longitude, five zones based on latitude, ten zones based on
elevation, nine zones based on HDD, and eight zones based
on CDD. We used the 1961–1990 annual mean total heating
and cooling degree day from the National Climatic Data
Center [2002]. The per capita CO2 emissions in each of
the defined zones were calculated as follows.

CPm
i ¼

X

j

Cm
i; j

X

j

Pi; j
ð3Þ

where CPi is the per capita CO2 emissions in each zone i,
j is the pixel number in each zone, C is the CO2 emissions,
P is population, and m is the economic sector.

2.4. Spatial Clustering
[17] Compared with visual examination of thematic maps,

statistical cluster analysis is a more objective metric when
analyzing nonrandom spatial patterns. Exploratory spatial
data analysis (ESDA) method was used to study the spatial
patterns of absolute and per capita CO2 emissions in each
economic sector. A global Moran’s I test, a univariate sta-
tistic which is a measure of spatial autocorrelation, was
performed to assess whether the pattern of sector‐specified
CO2 emissions has an average tendency to cluster in space
[Anselin et al., 2004]. The global measure of Moran’s I is
defined as:

I ¼ NX
i

X
j
Wij

X
i

X
j
Wij Xi & !ð Þ Xj & !

! "

X
i
Xi & !ð Þ2

ð4Þ

Where N is the number of spatial units, Wij is the row‐
standardized contiguity matrix, Xi is the absolute or per
capita CO2 emissions in area i, Xj is the absolute or per
capita CO2 emissions in area j, and m is the average level of
absolute or per capita CO2 emissions. Neighbors used to
build the contiguity‐based weights were designed based on
the first‐order rook matrix which defines a location’s neigh-
bors as those areas with shared borders [Anselin et al.,
2004].
[18] With the tendency for spatial clustering quantified, a

local indicator was used to identify the location of clusters.
Local indicators of spatial association (LISA) provides
information relating to the location of spatial clusters and the
types of spatial correlation [Anselin, 1995; Anselin et al.,
2004, 2006; Borden and Cutter, 2008; Loughnan et al.,
2008; Franczyk and Chang, 2009]. LISA provides more
information about the magnitude of spatial autocorrelation at
the local level in addition to the global scale, especially for
spatially heterogeneous variables. The local measure of
Moran’s I, LISA, is defined as:

I ¼ N Xi & !ð ÞX
i
Xi & !ð Þ2

X
j
Wij Xj & !

! "
ð5Þ

Here we define clusters of “high‐high” emissions as spa-
tially coherent clusters of large magnitude fossil fuel CO2
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emissions, and cluster of “low‐low” emissions as spatially
coherent clusters of low‐values fossil fuel CO2 emissions.

3. Results and Discussion

3.1. Top Ten State‐Level Emitters
[19] Figure 1 shows the spatial distribution of CO2 emis-

sions and its sectoral breakdown at the state level. The results
not only demonstrate the spatial variation of total CO2
emissions, but also the sectoral variation in each state. Elec-
tricity production in the middle of the U.S. is the largest
proportion of the total CO2 emissions, while transportation
dominates in the coastal states. The largest emitters overall
are a combination of those with large populations and/or
significant industrial activity.
[20] Tables 1 and 2 present the top ten fossil fuel CO2

emitting states sorted by magnitude within each economic
sector in absolute and per capita units, respectively. In
absolute terms, the states of Texas and California are con-

sistently in the top positions across the economic sectors.
The sector for which Texas does not occupy a position
within the top five is the residential sector. This is likely due
to the limited winter demand for space heating, the domi-
nant source of onsite residential CO2 emissions in colder
locales. Similarly, California does not occupy a position
in the top five for the electricity production sector. This
is likely due to the fact that a significant share (>50%) of
California electricity consumption is generated by nonfossil
fuel sources (Energy Information Administration, 2009).
[21] Examination of the top emitters on a per capita basis

shows a greater mix of states occupying the top positions.
States with low populations combined with more northern
latitudes, energy‐intensive industry or electricity production
determine the top positions.

3.2. County‐Level Spatial Patterns
[22] The spatial patterns of the absolute and per capita

total CO2 emissions at the county spatial scale are shown in

Figure 1. Total and sector‐specific contiguous U.S. fossil fuel CO2 emissions at the state level for the
year 2002.

Table 1. The Top Ten Absolute Vulcan 2002 Fossil Fuel CO2 Emitting States by Magnitude Within Each Economic Sectora

Total Residential Commercial Industrial
Electricity
Production Transportation

Magnitude State Magnitude State Magnitude State Magnitude State Magnitude State Magnitude State

142.88 TX 9.71 NY 6.4 CA 37.48 LA 60.97 TX 50.68 CA
99.66 CA 7.67 CA 4.38 NY 36.22 TX 33.48 OH 39.07 TX
75.44 OH 7.39 IL 4.22 PA 18.6 CA 33.36 FL 31.56 FL
73.78 FL 6.62 PA 3.72 IL 14.71 PA 32.18 IN 22.84 NY
71.31 PA 6.05 OH 3.61 TX 14.27 OH 27.6 PA 21.87 IL
66.21 IL 5.71 MI 2.93 MN 12.63 IN 25.14 IL 18.98 OH
62.63 IN 4.59 NJ 2.76 IN 11.9 MN 24.86 KY 18.65 GA
61.4 LA 4.42 MA 2.66 OH 11.53 AL 22.86 WV 18.16 PA
53.66 NY 3.01 TX 2.64 NJ 8.59 OK 21.72 AL 18.12 MI
51.76 MI 2.73 WI 2.24 MI 8.1 IL 20.84 GA 14.7 NC

aUnits: million tonnes of carbon per year.
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Figure 2. Large total (Figure 2a) absolute CO2 emissions
occur in Florida, the upper Midwest population centers, the
Southwest, west coast population centers, the southern
Rocky Mountain region, and the “BosNYWash” corridor
of the east coast. On a per capita basis, emissions have a
nearly inverse relationship to the absolute spatial distribu-
tion in which larger emissions occur in the Western Plains
and Rocky Mountain regions coincident with lower popu-
lation density. The influence of county size is notable in
Figure 2. County sizes tend to be larger in the western half
of the United States and hence must be considered when
interpreting results at the county scale.
[23] Absolute residential CO2 emissions (Figure 2b) are

distinct from the total emissions pattern due to relatively
greater emissions in the northeast, upper Midwest, west
coast and southwest. When normalized by population, res-
idential emissions are concentrated north of roughly 36°N
latitude and east of the Rocky Mountains. These gradients
reflect space heating needs driven by regions with more con-
tinental climate and, hence, longer, colder winters [Energy
Information Administration, 2001]. The residential sector is
strongly tied to population as absolute emissions are dom-
inated by nonelectrical space heating in the Vulcan system
[Gurney et al., 2009].
[24] Absolute and per capita commercial CO2 emissions

(Figure 2c) show a pattern similar to that found in the res-
idential sector but with less latitudinal dependence and a
more scattered distribution of the larger per capita values.
Because space heating constitutes a somewhat lower overall
proportion of the total commercial fossil fuel energy use
when compared to the residential sector, the spatial pattern
appears less dependent upon climate conditions [United
States Department of Energy, 2008].
[25] The per capita calculation in both the residential and

commercial sectors reveals the weakness of aggregation at
the county spatial scale. For example, some states show
distinct boundary outlines when normalized by population
(Utah, Illinois, and New York) and these are primarily due
to the fact that building density varies significantly at scales
below the county level. In the Vulcan data product pro-
duced at the 10 k × 10 km scale, these state outlines are
eliminated due to the fact that residential and commercial
emissions are distributed via census tract density of build-
ing area statistics [Gurney et al., 2009].

[26] Large absolute industrial CO2 emissions are distrib-
uted heterogeneously across the U.S. while centers of high
per capita industrial CO2 emissions show a slight concen-
tration in particularly intense industrial regions with some-
what lower population density such as the Gulf Coast, the
oil‐producing/refining regions of Texas and Oklahoma, the
upper Midwest and the Front Range of the Rocky Moun-
tains (Figure 2d). Dominated by large power facilities, abso-
lute and per capita electricity production CO2 emissions
show a similarly heterogeneous pattern across the U.S.
due to the presence of large fossil fuel‐based power pro-
duction facilities in most regions and the presence of some
of these facilities in counties with low population.
[27] High absolute transportation CO2 emissions (Figure 2f)

show a pattern similar to that found in the residential and
commercial sectors while per capita transportation CO2
emissions are clustered in the Western U.S. due to a com-
bination of lower population density and longer average trip
distance [Peng and Lu, 2007].

3.3. Probability Distributions of Per Capita Emissions
[28] The CPD of the sectoral per capita CO2 emissions

at the county level is shown in Figure 3. The distribution of
the sectoral per capita CO2 emissions can be described by
three distinct groupings. In the case of the electricity pro-
duction sector, the distribution shows per capita emissions
which are spread over a wide distribution of values with the
presence of both very small and very large per capita values.
However, unlike the other economic sectors, emissions are
present in a minority of the 3,141 counties in the U.S.; only
1,215 counties reported emissions from the electricity pro-
duction sector. About 25 percent of those counties contain
emissions less than 0.01 tonne C/person. In absolute terms,
75% of all electricity production CO2 emissions are located
in 233 counties, and 95% of the emissions are achieved after
including 515 counties.
[29] Per capita transportation CO2 emissions exhibit a rel-

atively compressed distribution with values spanning the
1 to 4 tonne C/person range. This demonstrates the rela-
tively homogeneous need for transportation on a per capita
basis. The CPD of residential, commercial, and industrial
CO2 emissions can be considered a third distributional group
with a range less compressed than the transportation sector
but not as widely scattered as the electricity production

Table 2. The Top Ten per Capita Vulcan 2002 Fossil Fuel CO2 Emitting States by Magnitude Within Each Economic Sectora

Total Residential Commercial Industrial
Electricity
Production Transportation

Magnitude State Magnitude State Magnitude State Magnitude State Magnitude State Magnitude State

36.69 WY 0.81 ME 1.03 AK 8.39 LA 24.05 AK 4.08 WY
21.11 ND 0.77 VT 0.58 MN 8.33 WY 14.44 WY 3.34 NM
16.17 WV 0.69 MA 0.56 DC 7.33 AK 12.71 ND 3.28 VT
14.29 AK 0.65 AK 0.51 WY 2.58 ALb 6.08 SD 2.75 OK
13.75 LA 0.64 CT 0.45 IN 2.47 OK 5.24 MT 2.56 GA
10.19 IN 0.63 RI 0.44 ND 2.40 ND 5.20 NE 2.33 TN
10.17 ALb 0.60 NH 0.38 WI 2.37 MN 4.86 OK 2.32 MO
9.82 KY 0.59 UT 0.34 PA 2.12 NM 4.58 NM 2.29 MS
9.71 MT 0.59 IL 0.34 WV 2.12 AR 4.13 VT 2.29 AL
9.59 NM 0.57 MI 0.34 RI 2.06 IN 4.12 AL 2.22 MT

aUnits: tonnes of carbon per year per person.
bThe underlying data reporting for Alabama has acknowledged biases. These have been corrected where possible [see Gurney et al., 2009].
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Figure 2. The (left) absolute (units: MtC/year) and (right) per capita (units: tonne C/year/person) CO2
emissions at the county spatial scale from (a) all sources; (b) the residential sector; (c) the commercial
sector; (d) the industrial sector; (e) the electricity production sector; and (f) the transportation sector.
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sector. Of the three, industrial per capita CO2 emissions
span both the greatest range of values with a more even
distribution, from very small to slightly greater than 1 tonne
C/person. The commercial and residential per capita CO2
emissions exhibit similar distributions but centered around
different mean values of 0.15 and 0.4 tonne C/person,
respectively.

3.4. Explanatory Variables
[30] In order to better understand the geographic and

environmental influences on CO2 emissions, we have binned
per capita CO2 emissions in each of the economic sectors
according to three geographic and two climate variables:
latitude, longitude, elevation, HDD, and CDD. We normal-
ize the sector‐specific, binned, per capita CO2 emissions by
subtracting the mean value and dividing by the standard
deviation. Figure 4 shows the distribution of these sector‐
specific per capita CO2 emissions as a function of the five
variables.
[31] The per capita total CO2 emissions are dominated

by electricity production and hence, exhibit patterns similar
to the per capita electricity production CO2 emissions,
as was noted in section 3.2 at the county spatial scale. The
dependence of per capita electricity production CO2 emis-
sions is complicated by the fact that the geographic pattern
is not expected to follow variables that drive electricity
demand because of the potentially long distance that can
separate production from demand, and that about 30% of
electric power was generated from nonfossil fuel energy in
2002 [Energy Information Administration, 2003].
[32] The longitudinal distribution of per capita electricity

production emissions is larger in the middle of the country
with lesser amounts toward both coasts. Per capita elec-
tricity production emissions also decrease somewhat from
south to north but increase with elevation. The increase in
per capita emissions across the middle and southern portion
of the country is in large part due to the location of large
electricity production facilities in areas with low population
density. This is further evidenced by states, such as Wyom-
ing, Montana and North Dakota which are among the highest
in‐state coal producers [Energy Information Administration,
2009]. This results in high ratios of electric generation to

Figure 3. The cumulative probability distribution (CPD)
of sectoral per capita CO2 emissions at the county level.
Per capita CO2 emissions are on log scale.

Figure 4. Spatial distribution of normalized per capita CO2
emissions due to the total and the residential, commercial,
industrial, electricity production, and transportation sectors
as a function of (a) longitude; (b) latitude; (c) elevation;
(d) heating degree day; and (e) cooling degree day.
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in‐state retail sales, implying that these states are net
exporters of electricity [Energy Information Administration,
2008]. Finally, electricity production in the Midwestern
and intermountain West is predominantly fueled by coal
as opposed to less carbon‐intensive energy sources such
as hydro, prevalent on the west coast [Energy Information
Administration, 2007]. Increasing per capita emissions with
elevation is due to the fact that population density declines
with elevation more dramatically than does electricity pro-
duction. CO2 emissions from electricity production show no
consistent relationship to HDD, consistent with the fact that
only about 8% of the space heating is directly driven by
electricity (Energy Information Administration, Residential
energy consumption survey, 2001, available at http://www.
eia.doe.gov/emeu/recs/recs2001/ce_pdf/spaceheat/ce2‐
2c_construction2001.pdf). By contrast, there is a slight rise
in per capita electricity production CO2 emissions with
increasing CDD. This is consistent with the expectation that
electrical air‐conditioning demand is higher in locales with a
greater number of hot days [Pétron et al., 2008]. Further-
more, we speculate that this may also be a collinear effect
with the preponderance of coal‐burning facilities in the Mid-
west which spans 1000 to 3000 cooling degree day range.
[33] The per capita residential and commercial CO2 emis-

sions share similar patterns for each of the independent
variables and can be explained primarily by climate influ-
ences. Higher elevations and northern latitudes exhibit a
greater number of HDD and hence greater space heating
needs. The longitudinal dependence, with slightly higher
values in the East and declining toward the West, may be
partially due to the colder, more continental climate going
from West to East and the fact that average house/building
square footage also increases from West to East (Energy
Information Administration, Residential energy consumption
survey, 2005, available at http://www.eia.doe.gov/emeu/recs/
recs2005/c&e/summary/pdf/tableus1part1.pdf). For example,
average residential floor space per household based on 2005
sampling is smaller in the Pacific and Mountain census
regions (1,708 and 1,951 ft2, respectively) and larger in the
East North Central and New England census regions (2,483
and 2,472 ft2, respectively). Both residential and commer-
cial per capita CO2 emissions show a decline as the CDD
increases. This is due to the fact that air conditioning needs
are supplied through electricity, and hence, evident in the
relationship between electricity production and CDD.
[34] The per capita industrial CO2 emissions are larger in

the interior versus coastal areas in the longitudinal direction
while exhibiting a minimum in the 37°N to 41°N latitudinal
bin. The larger values in the southern latitudes are due to the
high‐emitting oil production and refining of the Gulf coast
region which are less labor‐intensive as evidenced by their
higher ratio of receipts per paid employee (http://www.
census.gov) than other industrial sectors. The per capita
industrial CO2 emissions have little dependence upon ele-
vation with a shift in values at approximately 600 m, above
which are mainly mountain states. The per capita industrial
CO2 emissions exhibit a complicated relationship to HDD
and CDD with a minimum in the center of the HDD and
CDD numerical spans and this may be collinear with the
underlying geographic distribution. Furthermore, the use
of a per capita normalization in the industrial sector (like

the electricity sector to a somewhat lesser degree) is com-
plicated by a number of factors. The amount of labor
required to support industrial activities varies and that var-
iation depends upon broad industrial classifications which,
in turn, have geographic relationships. For example, the
top coal producers, West Virginia, Kentucky and Wyoming
(Energy Information Administration, 2009), are among the
states with the highest GDP in the mining industrial cate-
gory (http://www.bea.gov/regional/gsp).
[35] The longitudinal dependence of per capita transpor-

tation emissions exhibit a maximum in the continental
interior corresponding to the ridge of large values running
west to east along the Mountain and intermountain West.
This is driven, in large measure, by the presence of large
coast population centers with high population density and
small trip distance values [Puentes and Tomer, 2008]. By
contrast, the latitudinal distribution of per capita transpor-
tation emissions has a minimum value in the middle of
the country. The relationship with elevation correlates with
the region of sparse population and high trip distance and
further corresponds to lower road densities noted by the
National Highway Planning Network data (http://www.fhwa.
dot.gov/planning/nhpn/).
[36] Increases in per capita transportation CO2 emissions

with elevation are due to greater trip distances in predomi-
nantly rural, high‐elevation locales. The relationship between
per capita transportation emissions and HDD exhibits max-
ima at values ranging from 2000 to 4000 and at values
greater than 7000. The relationship is likely collinear with
geography, particularly the increasing per capita transporta-
tion emissions at the higher HDD values, which corresponds
to the rural, high trip distance mountain and intermountain
West. Similarly, the relationship between per capita trans-
portation emissions and CDD exhibits some collinearity with
geography (the lowest CDD values correspond to the cold
mountain/inter mountain west) though research supports
lessening vehicle efficiency at higher temperatures due to
increased air conditioner use. Studies indicate that running
the air conditioning in a passenger car reduces fuel effi-
ciency by approximately 12% at highway speeds [Parker,
2005; Climate Change Science Program, 2007].
[37] The relationship between the sectoral per capita

emissions and the CDD/HDD values has implications for
how energy demand and emissions will respond to climate
change. Though spatial gradients are not a perfect sub-
stitute for temporal behavior, the spatial relationships are
informative. For the HDD metric, both the residential and
commercial per capita emissions show a reasonably linear
response. In the residential and commercial sectors, binned
HDD values explain 88% and 86% of the variation in per
capita carbon emissions. Furthermore, the relationship sug-
gests a decline of 0.07 and 0.03 kg C/person per unit of HDD
decline in the residential and commercial sectors, respec-
tively, a reflection of the lessened need for space heating as
HDD values decline over space.
[38] For the CDD metric, the relationship is most pro-

nounced for emissions in the electricity production sector
(explained variance of 68%). This relationship suggests that
an increase in one unit of CDD would be accompanied by
0.57 kg of carbon per person. This exceeds the incremental
residential and commercial space heating emissions decline
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due to warmer temperatures by over a factor of five. Some
of this is explained by the carbon intensiveness of elec-
tricity production versus space heating. However, even if
one assumed that all electricity production was based on
coal and all space heating was based solely on natural gas,
the ratio of carbon intensity would suggest a factor of two.
Hence, it would appear that per capita electricity production
CO2 emissions are far more sensitive to external tempera-
ture than residential and commercial per capita CO2 emis-
sions. This stands in stark contrast to studies that have
suggested future warming would be accompanied by sav-
ings in space heating needs that nearly offset the require-
ments of increased cooling [Hadley et al., 2006].

3.5. Spatial Clustering
[39] To objectively explore the spatial patterns of fossil

fuel CO2 emissions produced by the Vulcan inventory, a
null hypothesis, implying random spatial distribution, was
tested via spatial autocorrelation using a Global Moran’s I.
The results for absolute and per capita CO2 emissions in
each sector are summarized in Table 3. The statistical sig-
nificance of the spatial clustering was computed using a
permutation approach with 9999 permutations [Anselin et
al., 2004]. The results indicate statistically significant pos-
itive spatial autocorrelation for the absolute and per capita
CO2 emissions in all sectors except for the per capita
emissions in the commercial sector. A large positive value
indicates that similarly valued emissions are highly clustered
in space.
[40] The positive autocorrelation of per capita CO2 emis-

sions in each sector is lower than the absolute value except
for the residential and electricity production sectors. This is
due to the clustering effect of population and the associated
emissions in large population centers. For example, the
global Moran’s I coefficient for transportation CO2 emis-
sions decreases from 0.34 to 0.15 when normalized by
population.
[41] The largest spatial autocorrelation value is present

in the residential sector with a global Moran’s I coefficient
of 0.43 and 0.82 for the absolute and per capita values,
respectively. This is consistent with the evidence that resi-
dential emissions are dominated by space heating and space
heating is driven by local climate, itself a positively auto-
correlated variable [Tan et al., 2005]. Normalization by pop-
ulation heightens this effect by focusing on colder areas with
lower population density. The result is high clustering in the
upper Midwest, New England, and the Rocky Mountains.
The low Moran’s I coefficients for the industrial sector and
electricity production indicates a more random distribution

of emissions. This is not entirely surprising as the emissions
in these two sectors are dominated by point sources which
are often isolated and in low population density locales
[Gurney et al., 2009].
[42] Figure 5 presents the sector‐specific LISA values

(denoted as “high‐high” and “low‐low”) for the absolute
and per capita CO2 emissions.
[43] The clusters of low‐low absolute CO2 emissions

show similar patterns across all the sectors except for elec-
tricity production in which the low‐low clustering through-
out the western Plains region is absent. This owes in part
to the presence of large electricity production facilities in
relatively remote portions of the West and Southwest United
States [Gurney et al., 2009]. The extent of these low‐low
clusters varies in each economic sector, however. The low‐
low absolute CO2 emissions in transportation sector have
the greatest spatial extent compared to other sectors. The
clusters of low‐low absolute industrial CO2 emissions are
distributed somewhat more heterogeneously than other eco-
nomic sectors. The high‐high clusters of absolute CO2
emissions are less extensive than the low‐low clusters
across all sectors. Aside from electricity production and the
industrial sector, the clusters of high‐high absolute CO2
emissions are mainly distributed throughout the high pop-
ulation urban corridors. As with the low‐low clustering,
the high‐high clustering for electricity production and the
industrial emissions are scattered and limited in spatial extent.
This, once again, highlights the disaggregated nature of
these point source facilities.
[44] Normalization by population causes a shift in which

the low‐low cluster moves from predominantly inland loca-
tions to more coastal regions across all sectors. The excep-
tion to this pattern is electricity production which shows
only a minor change when normalized by population. The
spatial extent of these clusters tends to decrease except
for the residential sector. The residential per capita CO2
emissions, by contrast, show large low‐low clusters through-
out the coastal U.S., occurring along the west coast, the
Southwest, the Gulf coast, and coastal Southeast. The areas
of low‐low per capita commercial CO2 emissions are next in
magnitude, and share much of the pattern of the residential
per capita emissions except that the western and southwest
maxima do not occur. These low‐low clusters are coinci-
dent with milder marine‐influence climates, requiring less
extreme wintertime interior heating.
[45] The high‐high clusters of per capita CO2 emissions

are most pronounced for the residential and transportation
sectors where they tend to occupy inland areas, especially in
the case of the transportation sector. The high‐high clusters
of per capita CO2 emissions in the residential sector are the
largest and most spatially coherent, and they mainly occur
in New England, the Middle West, Utah, and Kansas. The
low‐low and high‐high spatial clustering of per capita elec-
tricity CO2 emissions is small compared to other sectors.
Owing to the fact that they dominate the total emissions,
this pattern tends to drive the spatial clustering in Figure 5a.

4. Conclusions

[46] The fossil fuel CO2 emissions inventory developed
by the Vulcan Project provides a sector‐specific high reso-
lution view of anthropogenic CO2 emissions in the United

Table 3. The Global Moran’s I for Absolute and per Capita Fossil
Fuel CO2 Emissions in Each Economic Sector and Total Sourcea

CO2 Emissions
Moran’s I
(Absolute)

Moran’s I
(per Capita)

Total 0.23 (0.001) 0.13 (0.001)
Residential 0.43 (0.001) 0.82 (0.001)
Commercial 0.25 (0.001) 0.00 (0.1)
Industrial 0.10 (0.001) 0.03 (0.02)
Electricity Prod 0.08 (0.001) 0.13 (0.001)
Transportation 0.34 (0.001) 0.15 (0.001)

aStatistical significance is provided in parentheses.
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Figure 5. LISA cluster maps for the (left) absolute and (right) per capita CO2 emissions at the county
spatial scale from (a) total sources; (b) the residential sector; (c) the commercial sector; (d) the industrial
sector; (e) the electricity production sector; and (f) the transportation sector.
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States. The work presented here analyzes the spatial patterns
of the absolute and per capita Vulcan CO2 emissions and
finds consistency with research at coarser scales that high-
lights the impacts of environment and place on CO2 emis-
sions [Coondoo and Dinda, 2008]. Through the analysis
presented here, the following conclusions can be drawn.
[47] 1. The spatial patterns of absolute versus per capita

fossil fuel CO2 emissions differ substantially and these dif-
ferences are sector‐specific. This is especially true of the
residential and transportation sectors where absolute emis-
sions tend to be highest in population centers. Per capita
emissions in the residential sector, by contrast, tend to be
highest in more continental/northern locations. Per capita
transportation emissions are highest in regions with low
population density and high mean travel distance. At the
state‐level, populous, industrial‐active states such as Cali-
fornia and Texas tend to occupy the top emitting positions
in terms of absolute emissions.
[48] 2. The statistical distribution of the per capita emis-

sions shows the narrowest distribution for the transportation
sector with values ranging from 1 to 4 tonnes C/person.
Electricity production exhibits the widest distribution with
values ranging from 0.001 tonnes C/person to values greater
than 100 tonnes C/person.
[49] 3. The HDD is a critical determinant of residential

and commercial CO2 emissions, and these patterns are col-
linear with latitude and continentality. The geographic and
environmental influences on industrial CO2 emissions are
less pronounced than for the residential and commercial
sectors and this is likely due to underlying drivers associated
with labor intensiveness and proximity to raw materials.
CO2 emissions from electricity production show patterns
confirming the presence of large coal‐fired production
facilities in the Midwest and low‐population locations in
the Intermountain and southwest regions. Per capita trans-
portation CO2 emissions show patterns consistent with depen-
dence upon average trip distance with higher values in the
low‐population Mountain and intermountain West.
[50] 4. The spatial gradients of residential, commercial

and electricity production CO2 emissions versus CDD and
HDD can be used as a rough proxy for the relationship
between increased temperature due to climate change and
CO2 emissions. The analysis finds that the emissions asso-
ciated with per capita increases in electricity production
are roughly five times the reduction in per capita residential
and commercial emissions due to lessened heating require-
ments. Taking into account carbon intensity of fuel sources
associated with these sectors suggests that the energy
requirement of increased cooling will still be over twice that
of the energy saved through lessened heating needs.
[51] 5. Spatial clustering analysis clearly shows the pres-

ence of strong statistically significant nonrandom clusters
of fossil fuel CO2 emissions and these spatial patterns are
distinct for each economic sector. The spatial size or domain
of the spatial clusters is also dependent upon economic
sector and absolute versus per capita metrics. Per capita
emissions in residential and transportation sector show the
largest spatial clustering of high per capita values though
significant, large clusters exist for the commercial and indus-
trial sectors as well.
[52] These conclusions imply a number of things for car-

bon cycle science. It is clear that population is an unreliable

and biased proxy for the spatial distribution of fossil fuel
CO2 emissions, particularly when the scale of analysis goes
below the state spatial scale. Atmospheric CO2 measure-
ment campaigns aimed at supplying additional measure-
ment constraints to carbon budget efforts require accurate,
spatially resolved emission source estimates [Mays et al.,
2009]. This is particularly true of studies that have begun
to examine regional and urban‐scale spatial domains (North
American Carbon Program, Mid‐continent intensive interim
synthesis, 2008, available at http://nacp.ornl.gov/mast‐dc/
int_synth_mci.shtml). In order to best utilize atmospheric
measurements the emission source and intervening atmo-
spheric transport must be determined with accurate space/
time representation. Large point sources, such as electricity
production or industrial facilities are of particular note in
this regard. Most importantly, the heterogeneity of the fossil
fuel CO2 emissions strongly suggests that regional or urban
carbon cycle studies will have a unique suite of source
characteristics and the sectoral composition and magnitude
will be important considerations in the design of atmo-
spheric measurement campaigns. Our recent research on
quantification of building/street‐level emissions in the city
of Indianapolis demonstrates the significant source hetero-
geneity in urban environments [Zhou and Gurney, 2010].
Finally, the spatial distribution of point (e.g., electricity
production) versus area‐based sources (e.g., residential and
commercial) is an important factor in the coupling to atmo-
spheric transport modeling. For example, point source char-
acteristics such as the precise location, stack height and exit
velocity become critical factors for transport and atmospheric
sampling as the spatial domain reaches the urban scale.
[53] The conclusions also have implications for emis-

sions mitigation policy. National and subnational (state
aggregates or individual state) policy design can consider
strategies that most efficiently target spatially coherent oppor-
tunities. For example, efforts aimed at individual consumers
versus urban or regional aggregates might focus on differ-
ent portions of the U.S. and that may depend upon the sector
chosen and analysis of per capita versus absolute emission
metrics. The residential versus electricity production sectors
demonstrate this vividly; normalization by population has
a dramatic spatial influence on the residential sector but little
impact on electricity production.
[54] The spatial domain of the emissions clustering also

raises important policy considerations. It suggests that strat-
egies that encompass multistate regions, such as the clusters
of high residential per capita emissions in New England and
Midwest, may provide more efficient policy gains in par-
ticular sectors, than those at the individual state level (and
certainly at the national level). This recognition intersects
critically with regional development goals, already encum-
bered by overlapping metropolitan, county, and state gov-
ernance constraints.
[55] Finally, the relationship between external tempera-

ture and sectoral emissions suggests that the increased elec-
tricity consumption due to space cooling requirements under
a warmer climate may outweigh the savings generated by
lessened space heating. This holds implications for energy
systems planning and future fuel mix needs.
[56] The results presented here offer a number of future

research avenues. Understanding the underlying mechanis-
tic (social, economic, technological) emission drivers is a
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logical complement to the spatial analysis presented here
and will further assist mitigation policy strategies. Further
downscaling to the building/street level offers additional
means to evaluate the estimation methods by availing of
data sets such as utility billing, traffic monitoring, and
manufacturing statistics. It also offers mitigation oppor-
tunities at the municipal scale, where mitigation goals estab-
lished at the national level will be operationalized by city
planners and local sustainability programs. For example,
recent research attempted comprehensive quantification of
fossil fuel CO2 emissions at the scales of individual build-
ings in urban environments [Zhou and Gurney, 2010]. The
relationship between HDD/CDD and sectoral emissions must
be further explored with multiyear emissions and tempera-
ture data to better quantify the relationship suggested here
through spatial gradients and is a crucial component of
energy systems planning in a warmer world.
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