
Energy Policy 55 (2013) 386–395
Contents lists available at SciVerse ScienceDirect
Energy Policy
0301-42

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/enpol
Implications of uncertainty on regional CO2 mitigation policies for the
U.S. onroad sector based on a high-resolution emissions estimate
Daniel Mendoza a,n, Kevin Robert Gurney b, Sarath Geethakumar c, Vandhana Chandrasekaran c,
Yuyu Zhou d, Igor Razlivanov b

a Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, United States
b School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, United States
c CERIAS, Purdue University, West Lafayette, IN 47907, United States
d Pacific Northwest National Laboratory, College Park, MD 20740, United States

H I G H L I G H T S
c State-level biases of road groupings are twice as large as biases of vehicle groupings.
c State-level fleet composition is a large driver of the biases.
c Emissions uncertainty is driven by uncertainties in VMT and fuel efficiency and less by fleet composition variation.
c Errors of 760% corresponding to 70.2 MtC at the state level for 10% emissions mitigation when using national averages.
c Recommendations are made on reducing uncertainty in onroad CO2 emissions.
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In this study we present onroad fossil fuel CO2 emissions estimated by the Vulcan Project, an effort

quantifying fossil fuel CO2 emissions for the U.S. in high spatial and temporal resolution. This

high-resolution data, aggregated at the state-level and classified in broad road and vehicle type

categories, is compared to a commonly used national-average approach. We find that the use of

national averages incurs state-level biases for road groupings that are almost twice as large as for

vehicle groupings. The uncertainty for all groups exceeds the bias, and both quantities are positively

correlated with total state emissions. States with the largest emissions totals are typically similar to one

another in terms of emissions fraction distribution across road and vehicle groups, while smaller-

emitting states have a wider range of variation in all groups. Uncertainties in reduction estimates as

large as 760% corresponding to 70.2 MtC are found for a national-average emissions mitigation

strategy focused on a 10% emissions reduction from a single vehicle class, such as passenger gas

vehicles or heavy diesel trucks. Recommendations are made for reducing CO2 emissions uncertainty by

addressing its main drivers: VMT and fuel efficiency uncertainty.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Global warming is a leading environmental challenge cur-
rently faced by the world. Carbon dioxide (CO2) is the most
abundant anthropogenic greenhouse gas and projections of fossil
fuel energy demand show CO2 concentrations increasing indefi-
nitely into the future (Denman et al., 2007).

After electricity production, the transportation sector is the
second largest CO2 emitting economic sector in the United States,
ll rights reserved.

Mendoza).
accounting for 32.3% of the total U.S. emissions in 2002 (Gurney
et al., 2009). Over 80% of the transportation sector is composed
of onroad emissions, with the remainder of emissions shared by the
nonroad, aircraft, railroad, and commercial marine vessel transpor-
tation (United States Environmental Protection Agency, 2011b).

No national policy exists to regulate greenhouse gases in the
United States, but legislation has been passed in the European
Union to reduce fossil fuel CO2 emissions from the transportation
sector (Council of the European Union, 2009). Though CO2 is not
declared a pollutant in the US, its increase has been deemed a
threat to the ‘‘public health and general welfare of current and
future generations’’ and the passage of climate mitigation measures
seems imminent (United States Environmental Protection Agency,
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2009). Some states and localities, such as California, have passed
emission reduction regulations independent of national policy-
making (California Air Resources Board, 2009). Both national and
local legislation have recognized the importance of the transpor-
tation sector. Because localities have considerable control over
transportation planning and policy, interest in the potential of the
transportation sector to offer effective mitigation options is
increasing on both local and national levels (Vadas, 2007).

In order to construct effective mitigation policies for the
onroad transportation sector and more accurately predict CO2

emissions for use in atmospheric transport models and measure-
ments, analysis must incorporate the dominant components that
determine onroad transport CO2 emissions. These include, but are
not necessarily limited to, vehicle miles traveled (VMT) and
vehicle fuel efficiency. Furthermore, effective policy must be
based upon directly quantified CO2 emissions with local
granularity—municipal, city, or county levels and hourly
timescales—while simultaneously linking to national scale sys-
tems. This enables strategies such as improved fuel efficiency to
be undertaken and progressively monitored at both national and
local levels (Fuller et al., 2009; United States Congress, 2009;
United States Environmental Protection Agency, 2005). Due to the
ability of localities to institute policy, emission reduction
approaches must accommodate the particular needs of a
community.

Studies to date, have either focused on only one of these three
components, have been completed only at the national scale, or
have not explicitly represented CO2 emissions (Puentes, 2008;
Southworth et al., 2008; Stone et al., 2009).

Southworth et al. (2008) analyzed VMT and CO2 emissions for
the 100 largest metropolitan areas in the U.S. but only disaggre-
gated vehicles into trucks and passenger cars and used a single
national estimate of vehicle fuel efficiency for each of the two
vehicle types. Furthermore, the heterogeneity of emissions in
space was not fully addressed, as there was no disaggregation by
road type. Finally, only 100 metropolitan areas were studied,
which accounted for only about 65% of the total U.S. population at
the time of the study.

Puentes (2008) presented a thorough analysis of national-level
VMT from 1966 to 2008 and further subdivided the analysis into
vehicle classes, road classes and the largest metropolitan areas.
While this study explored VMT in detail, there was no analysis of
CO2 emissions.

Stone et al. (2009) discussed the impact of Hybrid Electric
Vehicle (HEV) introduction on urban mobile CO2 emissions.
The study involved a sample of eleven cities located in six states
in the Midwestern United States. However, the study assumed
there was no variation in the vehicle fleet across the six states and
hence, the vehicles had the same CO2 emissions per mile of travel.

In this paper, we overcome many of the previous limitations
by analyzing onroad CO2 emission differences between a new,
high-resolution emissions data product and a ‘‘low-resolution’’ or
‘‘national-average’’ approach, typical of previous studies. Our aim
is to demonstrate the quantitative impact of a highly-resolved
approach on emissions estimation and mitigation in the U.S.
onroad transportation sector. We perform this analysis at the
state spatial scale and disaggregate results by road, vehicle, and
fuel classifications. In Section 2, we describe the methodology
used in constructing both the high-resolution and national-
average approach in addition to uncertainty quantification.
In Section 3, we compare the high-resolution results to the
national-average approach, quantifying the onroad CO2 emissions
bias resulting from using a national-average approach. Section 4
discusses the implications of this study for constructing national
and regional policies for mitigating onroad CO2 emissions.
We also make a series of recommendations to lower and better
quantify the uncertainty associated with our high-resolution
emissions data product.
2. Methodology

2.1. Data

The onroad CO2 emissions analyzed here are a product of the
Vulcan Project, an effort aimed at quantifying hourly fossil fuel
CO2 emissions for the entirety of the United States at fine space/
time resolution (Gurney et al., 2009). The onroad mobile emis-
sions are constructed from a series of existing databases and
modeling efforts to generate CO2 emissions for the year 2002 at
the spatial scale of a U.S. county every hour for the entire U.S.
Further spatial allocation is performed in order to place these
emissions onto U.S. roads and onto a common 10 km�10 km
spatial grid.

The Vulcan 2002 emissions data product is used for this
analysis, as it is currently the only product available at this
resolution, as the multiyear product is still forthcoming. Changes
in composition and characteristics of urban and rural transporta-
tion, as well as LD and HD fleet makeup, have predictably
occurred throughout the U.S. since the 2002 product was estab-
lished. With respect to this fact, this paper aims to emphasize the
potential biases and uncertainties that can be calculated from the
distributions inherent to a particular year and is not intended to
reflect contemporary conditions. The calculations and methodology
are presented to highlight the importance of using localized data
for accuracy in terms of emissions estimates as well as policy
formulation.

2.2. Emissions calculation

The Vulcan onroad transportation emissions calculation uti-
lizes the total vehicle miles traveled (VMT) from the National
Mobile Inventory Model (NMIM) County Database (NCD) in which
the data is provided for each combination of 28 vehicle types,
6 road types, county, and month (see Appendix A for details).

To obtain onroad transportation CO2 emission factors (grams
CO2/mile driven), EPAs MOBILE6.2 onroad combustion model
was utilized (Harrington, 1998; United States Environmental
Protection Agency, 2001). MOBILE6.2 calculates CO2 emission
factors for each vehicle type based on fuel carbon content
(grams CO2/gallon of fuel), a vehicle fuel efficiency (miles/gallon
of fuel), a vehicle age distribution, and a carbon oxidation factor
(% oxidation) (see Appendix A for details). The product of VMT
and corresponding CO2 emission factor yields the county CO2

emissions for each road and vehicle type combination. This can
be expressed as

Cv,x
c ¼ VMTv,x

c � CFv
ð1Þ

where Cv,x
c is the CO2 emissions for vehicle type V on road type X

in county C; VMTv,x
c is the total vehicle miles traveled in county

C, for vehicle class V and road type X; and CFv is the CO2 emission
factor (mass of CO2/mile) for vehicle type V. Each county-specific
fleet is therefore defined by the combination of the vehicle type
mix and their respective VMT.

2.3. Comparison method

In order to compare results from the Vulcan high-resolution
emissions data product to a ‘‘low-resolution’’ or ‘‘national-aver-
age’’ approach, we estimate state level emissions by creating
average CO2 emissions factors for aggregate vehicle and road type
groups. Vehicles are grouped into either a light-duty (LD) or
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heavy-duty (HD) vehicle group (all fuels combined) and an urban
or rural road group (see Appendix A for details). All groups are
analyzed at the U.S. state spatial scale. The national-average
approach attempts to reflect the type of analysis typically
employed prior to the availability of the Vulcan data product
(Southworth et al., 2008; Stone et al., 2009).

The difference between these two approaches can be consid-
ered a bias that can be quantified for each of the vehicle and road
groups. We attempt to quantify two qualities of this bias: (1) the
ratio of the bias from each of the aggregate vehicle and road
groups to the CO2 total in a given state and (2) the ratio of the bias
from each of the aggregate vehicle and road groups to the
national total group-specific CO2 emissions. These metrics can
be expressed as

DS%G
S ¼ 100�

LEMG
S�VEMG

S

VEMS
ð2Þ

DN%G
S ¼ 100�

LEMG
S�VEMG

S

VEMG
N

ð3Þ

where DS%G
S and DN%G

S are the percent differences between the
Vulcan CO2 and national-average CO2 emissions for state S and
group G for state and national group-specific totals, respectively.
VEMG

S is the CO2 emissions for state S and group G obtained from
the Vulcan data product; LEMG

S is the CO2 emissions for state S

and group G obtained from the national-average approach; VEMS

is the total (summed across all groups) CO2 emissions for state S

obtained from the Vulcan data product; VEMG
N is the national total

CO2 emissions for group G.
Positive values for Eqs. (2) and (3) imply that the national-

average approach overestimates emissions relative to the Vulcan
estimate, and vice-versa. Eq. (2) quantifies the difference in state-
level CO2 emissions between the national-average approach and
the Vulcan estimate for each of the groups relative to the Vulcan
state total. Eq. (3) quantifies the difference in state-level CO2

emissions between the national-average approach and the Vulcan
estimate for each of the groups relative to the Vulcan national
total. Hence, Eq. (2) provides information about what is driving
the biases present at the state-level while Eq. (3) provides
information about where across the nation, the biases are most
important.
Table 1
VMT uncertainty levels used in Vulcan defined by road classification.
2.4. Uncertainty

There are two central variables in the calculation of onroad
transportation CO2 emissions in the Vulcan system, each with an
associated uncertainty. The first is the uncertainty associated with
the estimate of VMT. The other is the assignment of the CO2

emission factor to vehicle class. As shown below, the uncertain-
ties are centered symmetrically about the calculated Vulcan
result with an equal magnitude of uncertainty in both the positive
and negative directions.
Road description Uncertainty (%)

Interstate: Rural 3.04

Other principal arterial: Rural 3.04

Minor arterial: Rural 6.08

Major collector: Rural 7.8

Minor collector: Rural 7.8

Local: Rural 7.8

Interstate: Urban 7.8

Other freeways and expressways: Urban 7.8

Other principal arterial: Urban 7.8

Minor arterial: Urban 7.8

Collector: Urban 7.8

Local: Urban 7.8
2.4.1. VMT uncertainty

The VMT uncertainty stems from the precision of the measure-
ments and estimates of VMT produced by the FHWA. These
estimates may be found in Appendix C of the HPMS Field Manual
and are shown in Appendix A, Table A.8 (Federal Highway
Administration, 2005). Samples designated at a ‘‘90–10’’ confi-
dence interval and precision level contain VMT estimation within
710 percent of the true value, 90 percent of the time. In order to
convert these values to a one-sigma VMT variation, the stated
confidence interval and precision level were combined into a
single estimate of uncertainty as follows:

UX ¼
VX

SX
: ð4Þ

where UX is the uncertainty percent value associated with road
type X; VX is the percent variation from the true value for road
type X (10 for 90–10); SX is the number of standard deviations
within a normal distribution that is within variation VX of the true
value for road type X (‘‘90’’ for 90–10). In case of road types with
missing data, the lowest confidence and precision level (80–10)
was used. The VMT uncertainty calculated for each road type
using Eq. (4) is shown in Table 1.
2.4.2. Age distribution uncertainty

The CO2 emission factor per mile driven is derived from the
results of the MOBILE6.2 combustion model and is a function of
fuel carbon content (grams CO2/gallon of fuel), a vehicle fuel
efficiency (miles/gallon of fuel), a vehicle age distribution, and a
carbon oxidation factor (see Appendix A).

The age distribution has an impact on fleet emissions levels
due to the fact that for a particular vehicle class, a newer fleet has
higher fuel efficiency than does an older fleet, and thus lower CO2

emissions per mile. However, with the exception of the light-duty
diesel vehicle (LDDV) and small light duty diesel truck classes
(LDDT12) whose age distribution uncertainties are 2.71 and
4.06%, respectively, none of the age distribution uncertainties
exceed 2%. These figures are small compared to the fuel efficiency
and VMT uncertainties and are shown in Appendix A, Table A.9.
2.4.3. Fuel efficiency uncertainty

The other source of uncertainty considered for the CO2 emis-
sion factor is the vehicle fuel efficiency or the well-known miles
per gallon or ‘‘MPG’’ rating for a given vehicle type and model
year (central values provided in Appendix A, Table A.4).

The goal is to quantify how much variation about the mean
values presented in Appendix A, Table A.4 is present in a
population of drivers operating a particular vehicle class in a
particular vehicle age cohort. This translates into asking how
much variation is there in the idle time, stop/starts, acceleration
rates, etc.

For Vulcan uncertainty estimation, we use the percent difference
between the ‘‘5-cycle’’ and ‘‘Current EPA Label’’ estimates obtained
from tests performed by the EPA (see Appendix A for details).
The percentage difference values are assumed to be symmetric
uncertainties (both ‘‘hi’’ and ‘‘low’’) and are considered one-sigma
variations. The estimated uncertainties are shown in Table 2.
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2.4.4. Total uncertainty

The uncertainty ranges obtained for VMT, age distribution, and
fuel efficiency are then used to estimate extreme-case values for VMT
and emissions factors. The total uncertainty is obtained by using
these extreme-case values as inputs for Eq. (1), effectively yielding a
combined correlated total that represents the maximum or minimum
possible emissions for each road and vehicle type, specific to each
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Fig. 1. Vulcan state-specific normalized onroad fossil fuel CO2 uncertainties vs. emiss

uncertainty vs. total emissions; (c) normalized LD uncertainty vs. total emissions; (d)

fuel efficiency uncertainty (green triangles), fleet age uncertainty (red squares). The y-ax

this figure legend, the reader is referred to the web version of this article).

Table 2
Uncertainty by vehicle class and road category due to one sigma variations in fuel

efficiency.

Vclass # Vclass abbr. City uncertainty (%) Highway uncertainty (%)

1 LDGV 14 10

2 LDGT1 13 7

3 LDGT2 13 7

4 LDGT3 13 7

5 LDGT4 13 7

6 HDGV2B 13 7

7 HDGV3 13 7

8 HDGV4 13 7

9 HDGV5 13 7

10 HDGV6 13 7

11 HDGV7 13 7

12 HDGV8A 13 7

13 HDGV8B 13 7

14 LDDV 13 11

15 LDDT12 13 7

16 HDDV2B 13 7

17 HDDV3 13 7

18 HDDV4 13 7

19 HDDV5 13 7

20 HDDV6 13 7

21 HDDV7 13 7

22 HDDV8A 13 7

23 HDDV8B 13 7

24 MC 14 10

25 HDGB 13 7

26 HDDBT 13 7

27 HDDBS 13 7

28 LDDT34 13 7
county. When the extreme-case total is subtracted from the corre-
sponding average emissions total, the absolute result is the total one-
sigma emissions uncertainty. The total uncertainty is not additive,
and, in fact, has a smaller value than would be expected with an
additive total. This is because Eq. (1) forces a multiplicative combina-
tion of the fractional changes in VMT and emissions factors that are
due to uncertainty.
3. Results

3.1. Onroad fossil fuel CO2 emissions uncertainty

In order to place the uncertainty of the Vulcan onroad CO2

emissions in context, we calculate a ‘‘normalized’’ uncertainty for
each state. This quantifies uncertainty from each of the uncertainty
contributors (VMT, age distribution, fuel efficiency) and from each
of the aggregate road and vehicle type groups as a fraction of the
state total CO2 onroad emissions. This can be expressed as

D%U,G
S ¼ 100�

HEMU,G
S �VEMU,G

S

VEMS
ð5Þ

where HEMU,G
S is the high uncertainty Vulcan CO2 emissions for

state S, group G, and uncertainty type U; VEMU,G
S is the central

Vulcan CO2 emissions for state S, group G, and uncertainty type
U; VEMs is the central Vulcan CO2 emissions for state S. The
uncertainty type is either uncertainty due to VMT, age distribution,
fuel efficiency, or the combination of all three uncertainty factors.
A group represents either the aggregate vehicle type group (HD or
LD) or aggregate road type group (rural or urban). The normal-
ized uncertainty is presented in Fig. 1 and a comparison of total
state emissions with the corresponding fractional uncertainties is
presented in Appendix B, Table B.1.

As specified in the uncertainty construction, the largest contribu-
tors to the total uncertainty are the VMT and fuel efficiency
uncertainties which are an order of magnitude larger than the Fleet
Age uncertainty in all aggregate groups. The LD uncertainty generally
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shares characteristics of the urban uncertainty since the majority of
vehicles on urban roads are within the LD group.

VMT uncertainty is dependent only on road type, as outlined in
Section 2.4.1. Hence, the magnitude of the VMT uncertainty in the
rural and urban road type groups (Fig. 1a, b) reflects the propor-
tion of state VMT on rural vs. urban roads and these magnitudes
are inversely related for a given state. For example, Washington
DC, which contains only urban roads, has a normalized urban
VMT uncertainty of 7.8%, and a normalized rural VMT uncertainty
of 0%. Furthermore, states with smaller total emissions exhibit a
much more heterogeneous mix of urban vs. rural VMT repre-
sented by the greater scatter in normalized VMT uncertainty in
Fig. 1a/b. This heterogeneity declines as total onroad CO2 emis-
sions increase and reflects the fact that states with larger total
onroad emissions have a greater proportion of their total VMT on
urban roads.

Unlike the road group VMT uncertainty, the magnitude of the
two vehicle group VMT uncertainties reflects the relative propor-
tion of state VMT in the LD vs. HD vehicle groups, and the
distribution of each vehicle group on either urban or rural roads.
Because VMT uncertainty is sensitive to road type only, the
vehicle group VMT uncertainty magnitude reflects the correlation
between vehicle type and road type. Hence, the VMT uncertainty
for the LD group is much larger and closer to the urban VMT
uncertainty (7.8%) when compared to the HD vehicle group, the
vehicles of which are more likely to travel on rural roads.

Fuel efficiency uncertainty is dependent on both vehicle and
road type (‘‘city’’ vs. ‘‘highway’’) in the uncertainty construction
used in this study (see Section 2.4.3). However, the magnitude of
the uncertainty only varies with road type, being a fixed value
across all vehicle types. As with the VMT uncertainty, the fuel
efficiency uncertainty is greater for urban road types because of
the greater proportion of ‘‘stop-and-go’’ traffic which results in
greater fuel efficiency variation.

Fleet age uncertainty is dependent only on the vehicle type
(see Section 2.4.2). It exhibits the smallest uncertainty due to the
small observed variation in state-to-state fleet age distribution.
However, despite the fact that the uncertainty in age distribution
is small, it results almost exclusively from variation in the LD fleet
as opposed to the HD fleet. HD fleets are commercially-owned
and maintained by companies that have fleet management
policies in place to maximize fleet efficiency (Galletti et al.,
2010). A major component of fleet efficiency maximization is
regular vehicle replacement, decreasing variation within the age
distribution of HD fleets (Port of Long Beach, 2008). In contrast,
LD vehicles are generally privately owned and display a larger
spread in age distribution. As a result, the mean of fleet age
uncertainty for the LD group in Fig. 1c is 0.7% as opposed to a
mean of 0.2% for the HD group in Fig. 1d.
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3.2. Bias of a national-average approach

Fig. 2 shows the state-specific biases (Eq. (2)) of the national-
average results relative to the Vulcan data product organized into the
road and vehicle type groups. We find a spread of positive and
negative biases for both the road and vehicle type groups. These are
driven by the road and vehicle type compositions of each state, which
differ from the national-average. We find a larger spread of state-
specific bias values in the road type groups than in the vehicle type
groups.

Fig. 2 also highlights the correlation between the road and
vehicle type group emissions biases that results from the under-
lying relationships. For example, traffic on urban roads is com-
prised mostly of LD vehicles (r¼0.64; po0.0001), while rural
roads have a comparatively larger percentage of HD vehicle traffic
(r¼0.74; po0.0001) (Pechan, 1996).

In the case of the vehicle group bias, the magnitudes are driven
by states having a greater/lesser proportion of LD/HD vehicles
within their total state fleet when compared to the national-
average. For example, the LD vehicle class has emission factors
ranging from 177.4 grams CO2/mile (motorcycles) to 577.0 grams
CO2/mile (LD diesel trucks). If the amount of motorcycles in a
state is greater than the national-average, the national-average
approach will yield a positive emissions bias compared to the
Vulcan approach. The standard deviation of these biases is 2.0%
and 0.8% for the LD and HD groups, respectively.

The road group bias is driven by a combination of two factors:
(1) the amount of rural vs. urban VMT within each state relative to
the national average and (2) the vehicle class distribution compris-
ing the rural/urban VMT and its difference from the national
average. Hence, states having a larger amount of rural VMT relative
to the national average, but for which the vehicle class composition
of the rural VMT matches the national average, will still result in a
negative bias. If the vehicle class composition within the rural VMT
contains a greater proportion of higher-emitting LD vehicle types
than the national average, this will compound the negative bias.
Similarly, states in which the amount of rural VMT matches the
national average may still arrive at a bias were the vehicle class
composition within the rural VMT to contain a larger proportion of
higher-emitting LD VMT than the national average. These factors
account for the larger bias values in the road groups. The standard
deviation of these biases is 3.2% and 2% for the urban and rural
groups, respectively.

The correlation of road and vehicle type groups hides a more
revealing classification—‘larger’ vs. ‘smaller’ roads. For example,
larger road types (interstates and arterials) are used as commerce
routes to transport goods and have a larger fraction of HD vehicles
than smaller road types (collector and local roads) (Lindhjem and
Shepard, 2007). Hence, those states displaying negative urban
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biases are states whose percentage of traffic on these larger road
types exceeds the national average.

A few values are found outside of the central cluster in Fig. 2a.
For example, Washington has 28.9% of urban VMT residing on
interstates and freeways compared to the national average (23.8%).
Since these two road types have a larger proportion of HD traffic
compared to smaller urban roads, they will have a larger average
CO2 emission per mile of travel, creating the negative bias evident in
Washington’s urban road group. Conversely, Vermont and Nevada
have a smaller amount (3.8% and 19.2%, respectively) of urban VMT
comprised of interstate and freeway travel, accounting for the
positive urban group biases. Vermont and Nevada have more
(78.4% and 75.6%, respectively) LD VMT from the lesser-emitting
LD vehicle class, LDGV, than the national average (59.4%) creating
the positive LD group bias. The negative bias for Washington State’s
LD vehicle group results from a smaller amount (48.8%) of LD group
VMT from the lesser-emitting LDGV type.

The largest values in Fig. 2b are attributed to Wyoming,
Connecticut, and Nevada. Wyoming has 28.2% of its HD VMT
arising from the eight lowest-emitting HD vehicle classes, less
than the national average (38.0%), causing the negative bias for
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Wyoming’s HD group. Nevada and Connecticut have a larger
amount (51.6% and 40.0%, respectively) of their HD VMT stem-
ming from the same eight lowest-emitting HD vehicle classes,
accounting for the positive HD group biases. Wyoming has greater
rural interstate VMT (37.6%), compared to the national average
(24.8%), accounting for the negative rural group bias. Conversely,
Connecticut has less rural interstate VMT (21.3%), accounting for
its positive rural group bias. Nevada has greater rural local and
minor collector VMT (20.2%), compared to the national average
(18.1%), accounting for the positive rural group bias.

Fig. 3 shows the biases of Fig. 2 but normalized by the national
total, group-specific fossil fuel CO2 emissions (Eq. (3)). When
normalized by national totals, the biases highlight states with
large amounts of onroad emissions that also deviate significantly
from the national average. For example, although Connecticut has
the fifth largest rural road group bias (Fig. 2b), the state accounts
for less than 0.25% of the national emission total and hence, is not
an outlier value in Fig. 3b.

The vehicle class distribution is a significant contributor to the
observed LD and HD biases (Appendix A, Fig. A.1). States that
exhibit a positive LD bias (Fig. 3a: Texas, Florida, California) have
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

H
ea

vy
 D

ut
y 

B
ia

s 
(%

)

Rural Bias (%)

CTNJ

NY
CA

TX

vehicle group. A one-to-one line is present in each panel as a reference and large

s figure legend, the reader is referred to the web version of this article).

0

2

4

6

8

10

0 2 4 6 8N
or

m
al

iz
ed

 R
ur

al
 U

nc
er

ta
in

ty
 (%

)

Normalized Rural Bias (%)

CA

TX

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2N
or

m
al

iz
ed

 H
D

 U
nc

er
ta

in
ty

 (%
)

Normalized HD Bias (%)

CA

TX

ecific bias. Symbol size is proportional to total state emissions. (a) Urban; (b) rural;



D. Mendoza et al. / Energy Policy 55 (2013) 386–395392
large contributions from the lowest-emitting vehicle classes.
Conversely, the states showing a negative LD bias (Fig. 3a:
Michigan, Illinois, New York) have larger fractions than the
national average of emissions from the highest-emitting vehicle
classes. A similar pattern is shown in Appendix A, Fig. A.1b for the
HD group.

3.3. Bias and uncertainty comparison

Fig. 4 compares the normalized absolute bias (Eq. (2)) to the
normalized uncertainty (Eq. (5)) for each of the aggregate groups.
Since the uncertainty is þ/�1 sigma, the sign of the bias relative
to the uncertainty is impossible to ascertain. Thus we utilize the
absolute bias, as its sign is of little value.

In nearly all cases, the total Vulcan uncertainty exceeds the
calculated bias and exhibits no obvious relationship. However, the
largest-emitting states exhibit less variation in both normalized
bias and uncertainty for the aggregate groups than the smallest-
emitting states, as shown in Appendix B, Table B.2. A state may
emit a small amount of emissions, with the majority of these
emissions occurring on urban roads, while other small-emitting
states have predominantly rural emissions. Likewise, similar
trends are present for the vehicle groups, where small states
display larger standard and relative standard deviations when
compared to the same quantities for the larger states (Appendix B,
Table B.3). This heterogeneity in road and fleet composition is
associated with the wide range of bias and uncertainty values
seen for small-emitting states for all four aggregate groups.
4. Discussion

4.1. Policy implications

Uncertainty analysis in the context of environmental models is
a means to improve data collection and measurement as well as
calculation methods. After identifying the parameters with high-
est uncertainty, steps can be taken to improve current and future
emissions estimates (Lieberman et al., 2007). For example, the
IPCC’s guidance on national inventory construction suggests that
uncertainty analysis is intended to ‘‘improve the accuracy of
inventories in the future and guide decisions on methodological
choice’’ (Intergovernmental Panel on Climate Change, 2000).
Furthermore, quantification of emissions uncertainty is necessary
in order to accurately assess the impact of mitigation policy.
If uncertainty levels exceed the reductions expected from mitiga-
tion policies, it will be difficult to confirm policy effectiveness.
Accurate emissions estimation with realistic, unbiased uncertain-
ties are critical in assuring that reported emissions reductions are
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The red symbol represents the national average. (For interpretation of the references to c
credible. The Kyoto Protocol sets forth emissions reductions
targets of 7% from 1990 amounts by 2008–2012, a target that was
agreed upon but not ratified by the United States. The California
Senate proposed 8% reductions from 2005 amounts by 2020 and
15% reductions by 2035 (California State Senate, 2008; United
Nations Framework Convention on Climate Change, 2008). These
targets are the same size or smaller than the uncertainty found in
the rural, urban, and LD groups. Therefore even if the targets
proposed by the Kyoto Protocol and California Senate were
achieved, the reductions would not necessarily be detectable for
three out of the four road and vehicle groups.

Transportation sector policy formulation based on a US
national-average emissions approach is poorly suited for cities,
states and regions that differ from the national mean. Policies
based on the specific emission profiles of a county or state will
address specific regional needs and idiosyncrasies and thereby,
maximize emissions mitigation across the entire nation. For
example, a county or state with an older passenger car composi-
tion could be encouraged to discard the older, more inefficient
vehicles via a policy such as the Consumer Assistance to Recycle
and Save Program (United States Congress, 2009). In a similar
manner, states with a larger heavy-duty diesel truck composition
could focus on improving the fleet fuel economy by mandating
corporate participation in programs dedicated to this purpose,
such as the U.S. Environmental Protection Agency (USEPA) Smart-
Way Program (United States Environmental Protection Agency,
2011c).

Fig. 5 demonstrates the differential impact to state-level
emissions of a nationwide 10% reduction in emissions from the
Light Duty Gasoline Vehicle (LDGV) class and a Heavy-Duty Diesel
Vehicle (HDDV8B) class. These two vehicle classes were chosen
because they account for the largest fraction of emissions within
their respective vehicle groups. These reductions are comparable
to the fuel efficiency standards set forth by the EPA for LD and HD
vehicles (National Highway Traffic Safety Administration, 2011;
United States Environmental Protection Agency, 2011a; United
States Environmental Protection Agency, 2010. The reductions are
expressed as the difference between the actual percent reduction
and the expected emission reduction if using a national-average
fleet composition. Fig. 5 shows this difference as a function of the
proportion each specific vehicle class represents within the larger
vehicle groups used in this study.

Nationally, 51.9% of an average state’s LD group emissions are
due to the LDGV class. Fig. 5a shows the large spread of LDGV
proportion values, with some states having as little as 42.7% of
their LD group emissions accounted for by LDGV class and some
states as large as 75.2%. A 10% emissions reduction for the LDGV
class would yield a 3.8% average reduction in total state emis-
sions, but for a given state this value can range from 3.0 to 6.1%.
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This results in a range of deviation of �25% to 60% from the
expected emissions changes based on the national average.
For example, the LDGV proportion in Texas exceeds the national
average; the total reduction for this state would be subsequently
underestimated by 0.1 MtC/yr.

Similarly, 44.2% of an average state’s HD group emissions are due
to the HDDV8B class (Fig. 5b). This figure corresponds to a 1.2% total
emissions reduction in an average state if a policy advocating a 10%
HDDV8B emissions reduction were implemented. However, because
the HDDV8B proportion ranges from 22.8% to 57.7% overall reduc-
tions vary by state from 0.5 to 1.8%. The range of deviation from
expected changes is 760% from the national average. This would
yield an overestimation of emissions reductions by 0.2 MtC/yr in the
State of California.

Montgomery County, Maryland passed the first county-wide
carbon tax in the U.S. in 2010 calling for payments of $5 per ton of
CO2 (Montgomery County Council, 2010). Using the national-
average fleet as a baseline, the difference in expected and actual
emissions reductions obtained by a 10% emissions reduction
would cause California to be undercharged by nearly $800,000
under this policy due to its smaller fraction of HDDV8B vehicles.
Conversely, Texas would overpay by $500,000 due to its larger
fraction of LDGV vehicles.
4.2. Uncertainty improvement

The uncertainty in emissions due to VMT can be traced to a
number of sources. For example, missing VMT data for a given
state is gap-filled with data from a neighboring state. Additional
uncertainty can arise from undersampling annual average daily
travel (AADT) data on large and complicated road networks.

Poorly placed or distant traffic monitoring stations may lead to
vehicle miscounting. If stations are too far apart or placed
illogically with respect to exit and entry points on a given road
segment, vehicles may enter and/or exit without being recorded
(undercounting). The opposite problem may occur if a vehicle
enters just before the monitoring station and exits immediately or
shortly after being counted (overcounting). In order to reduce all
three of these sources of VMT uncertainty, a larger and more
representative set of monitoring stations is required, with optimal
placement.

Finally, uncertainty is introduced when state-level VMT esti-
mates are downscaled to counties, as described in Section 2.2.
If there are significant differences in road network composition
between individual counties and the state, bias results. One
example of this is a situation in which the proportion of interstate
to arterial roads varies significantly between an individual county
and the state in which it is located (Barrett et al., 2001; Bostrom
and Mayes, 2002; Federal Highway Administration, 2011).

An option to reduce the uncertainty associated with these
problems is a periodic review of the variables involved in the VMT
calculation. This assessment would be used to adjust the variables
to current values that reflect actual conditions. Such a procedure
would update scope of influence and lane-mile values for each
station and ensure that any gaps in data readings are filled in the
most accurate way possible. Additionally, the administration of
driver surveys or a sampling of odometer readings for vehicles
traveling within the domain associated with a particular station
would contribute to a more realistic characterization of
local VMT.

Though the smallest contributor to the overall onroad CO2

emissions uncertainty, the age distribution uncertainty could be
improved by obtaining registration information from the Bureau
of Motor Vehicles databases instead of relying on state-provided
data, as is currently done in the publicly available fleet data.
Analyses of new fuel efficiency regulations for the HD fleet and
revised corporate average fuel economy (CAFE) standards have
the potential to aid the formulation of a more accurate fuel
efficiency estimate, thereby lowering the fuel efficiency uncer-
tainty (United States Environmental Protection Agency, 2011a;
United States Environmental Protection Agency (2010). Available
data on annual vehicle sales by class may help to accurately
represent the particular fleet makeup of each state or region.
Such a portrayal, in conjunction with a larger, more representa-
tive sampling of vehicle classes, would provide the level of detail
necessary for a more comprehensive and accurate uncertainty
estimate. Additionally, because the fuel efficiency of the fleet is
dependent on its composition, an improvement in age distribu-
tion accuracy will improve fuel efficiency accuracy.

Because the traffic on each road type can vary by location, fuel
efficiency uncertainty has spatial dependence. City roads are
classified as small roads regardless of the city in which they are
located. However, a city road located in a major urban center may
experience significantly different traffic patterns from those on
small town roads. These disparities go unaccounted for in the fuel
efficiency uncertainty calculation and affect its accuracy. In order
to account for these obvious differences, revisions and expansions
must be made to the current road type classification system. By
accounting for location-specific differences, improved uncertainty
will enable more informed policy decisions to be made on the
basis of a more comprehensive and accurate assessment of road
network biases.

Atmospheric CO2 inversions use measurements of atmospheric
CO2 coupled with atmospheric transport models to infer
exchanges of carbon with the planetary surface (Enting, 2002;
Gurney et al., 2003). Given the importance of understanding
carbon exchange with the terrestrial environment and how it
might change with a warmer world, inversions have become an
important tool to understanding carbon budgets. The accuracy of
atmospheric CO2 inversion results depends on many factors,
including the spatial and temporal resolution of the fluxes being
estimated, the transport model, and prior estimates of the flux
(Gurney et al., 2003; Kaminski and Heimann, 2001). In particular,
biases in the prior flux have been shown to alias the residual
flux (Gurney et al., 2005; Peylin et al., 2011; Schuh et al., 2010).
The space and time distribution of the prior fossil fuel emissions
data product has become more important as inversions attempt
to solve for smaller space and time scales. As the second largest
emitting sector in most industrial economies, accurate represen-
tation of the onroad transportation sector space/time patterns are
thus, critical.

Although the state-level biases resulting from the national-
average emissions estimation approach in this study have been
found to be smaller than the uncertainty (less than 10%), they
remain relevant because they vary in space. This study has been
performed at the state level, thus the results would impact
atmospheric measurements and transport at the regional scale.
For example, Schuh et al. (2010) demonstrated that differences of
up to 150 g/m2 in the annual net ecosystem exchange (NEE)
estimate were obtained when the Vulcan fossil fuel fluxes were
used instead of a previously established flux inventory of lower
resolution. The magnitude of the observed differences is signifi-
cant and comparable to that of the maximum annual sinks
associated with the inversion.
5. Conclusions

As one of the largest sectoral sources of fossil fuel CO2

emissions in the United States, onroad fossil fuel CO2 emissions,
are an important component of carbon cycle budget studies and
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figure prominently in policies designed to mitigate greenhouse
gas emissions. Although onroad CO2 emissions in the United
States have been studied extensively, these efforts lack sub-
national spatial detail. Such detail is essential because both
scientific questions and greenhouse gas policies are being
explored at the urban landscape scale and current analysis cannot
adequately support quantitative decisions at these scales. Onroad
CO2 emissions are dependent on a variety of driving factors, all of
which are known to vary significantly at these smaller spatial
scales. Hence, in order to study, project and mitigate onroad CO2

emissions, a high-resolution onroad emissions data product is
paramount.

Three sources of uncertainty are quantified in this study:
vehicle miles traveled (VMT), fleet age, and fuel efficiency. VMT
and fuel efficiency normalized (by state total emissions) uncer-
tainty range from 2 to 12% and are approximately 5 to 10 times
larger than fleet age uncertainty. The total normalized uncer-
tainty is 2 to 15 times larger than the normalized bias. Uncer-
tainty quantification and reduction measures focused on VMT and
fuel efficiency would yield the maximum benefit. VMT uncer-
tainty reduction strategies involve a revision of the formula for
conversion of vehicle counts to VMT, as well an increased number
of traffic monitoring stations with optimal placement to minimize
inaccuracies in vehicle counting. A fuel efficiency uncertainty
improvement strategy would involve creating more spatially
explicit calculations of possible fuel consumption scenarios and
driving habits.

Although it is desirable to reduce uncertainty, it is of equal
importance to improve the accuracy of uncertainty estimates.
This can be accomplished by a more accurate spatial portrayal of
the sources of uncertainty through methods such as a more
representative sampling of vehicle classes and assessments of
regionally-explicit VMT estimates. Downscaling the temporal
domain for comparison to the county level is a realistic and
attainable goal due to the nature of the Vulcan data product. Due
to the heterogeneous distribution of roads and vehicles within a
state, this level of resolution is necessary for policy formulation at
this level.

Additionally we have compared onroad CO2 emissions based
on a national-average approach to a high-resolution onroad CO2

emissions estimate. In order to represent the differences in these
two approaches, we group emissions into either urban or rural
roads and either light-duty (LD) or heavy-duty (HD) vehicles.
Biases are obtained from the difference between the high-
resolution and national-average emissions.

We find that using group-specific national averages is consis-
tently associated with state-level emissions bias; however, the
range of bias estimated is strongly dependent on how the
emissions are classified. A vehicle group classification yields a
state-level normalized bias range of �2.6% to 8.1% while a road
group classification yields a state-level normalized bias range of
�6.3% to 16.8%. When normalized to the national total, these
differences account for bias ranges of �0.4% to 0.3% for a vehicle
type classification and �0.3% to 0.5% for a road type classification.
These biases are the direct result of regional heterogeneity in road
and fleet composition. There exists a positive correlation between
HD and rural biases and between LD and urban biases because
urban traffic is comprised mainly of LD vehicles and rural traffic
has a comparatively larger HD component.

Policy measures aimed at reducing emissions from a particular
group within the vehicle fleet must take into account regional
differences in fleet composition. Vehicle-specific mitigation stra-
tegies based upon national-average fleet composition have been
shown to display errors of up to 60% in expected state level
emissions reductions for the passenger car and heaviest diesel
truck classes. If a 10% emissions reduction from an individual
vehicle class is assumed, these estimation errors can be as large
as 760% corresponding to 70.2 MtC reductions in state totals.

Additionally, policy must be drafted keeping its scope of
predictable influence in mind. The largest-emitting states have
similar distributions of rural, urban, LD, and HD emissions, while
small-emitting states show greater heterogeneity in these groups.
Policy drafted for nationwide application should consider that
recommendations based on a national-average would affect
large-emitting states similarly and in a predictable manner, while
the results in smaller-emitting states would differ from the
expected reductions. Because of the nature of the HD group,
policy aimed at this group would benefit most strongly from a
regionally motivated approach as opposed to a national-average
approach.

Carbon cycle science similarly requires high-resolution fossil
fuel CO2 emissions data products to accurately isolate the net
terrestrial and oceanic fluxes. Atmospheric CO2 inversion studies
have already demonstrated the impact of high-resolution fossil
fuel CO2 prior fluxes on the spatial patterns of biospheric
exchange. As the second largest single sectoral source within
the total fossil fuel CO2 emissions in the United States, high-
resolution onroad emissions are a critical element in advancing
inversion studies. Furthermore, atmospheric CO2 inversions are
sensitive to the prior flux uncertainty, placing particular emphasis
on prior fluxes with well-quantified uncertainties.
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